3,046 research outputs found

    Chaotic wave functions and exponential convergence of low-lying energy eigenvalues

    Get PDF
    We suggest that low-lying eigenvalues of realistic quantum many-body hamiltonians, given, as in the nuclear shell model, by large matrices, can be calculated, instead of the full diagonalization, by the diagonalization of small truncated matrices with the exponential extrapolation of the results. We show numerical data confirming this conjecture. We argue that the exponential convergence in an appropriate basis may be a generic feature of complicated ("chaotic") systems where the wave functions are localized in this basis.Comment: 4 figure

    Local spin resonance and spin-Peierls-like phase transition in a geometrically frustrated antiferromagnet

    Full text link
    Using inelastic magnetic neutron scattering we have discovered a localized spin resonance at 4.5 meV in the ordered phase of the geometrically frustrated cubic antiferromagnet ZnCr2O4\rm ZnCr_2O_4. The resonance develops abruptly from quantum critical fluctuations upon cooling through a first order transition to a co-planar antiferromagnet at Tc=12.5(5)T_c=12.5(5) K. We argue that this transition is a three dimensional analogue of the spin-Peierls transition.Comment: 4 figures, revised and accepted in Phys. Rev. Let

    SuperB: a linear high-luminosity B Factory

    Full text link
    This paper is based on the outcome of the activity that has taken place during the recent workshop on "SuperB in Italy" held in Frascati on November 11-12, 2005. The workshop was opened by a theoretical introduction of Marco Ciuchini and was structured in two working groups. One focused on the machine and the other on the detector and experimental issues. The present status on CP is mainly based on the results achieved by BaBar and Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e- asymmetric B Factories operating at the center of mass energy corresponding to the mass of the Y(4s). With the two B Factories taking data, the Unitarity Triangle is now beginning to be overconstrained by improving the measurements of the sides and now also of the angles alpha, and gamma. We are also in presence of the very intriguing results about the measurements of sin(2 beta) in the time dependent analysis of decay channels via penguin loops, where b --> s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as charm and ISR physics are important parts of the scientific program of a SuperB Factory. The physics case together with possible scenarios for the high luminosity SuperB Factory based on the concepts of the Linear Collider and the related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor

    Creation of ultracold molecules from a Fermi gas of atoms

    Full text link
    Since the realization of Bose-Einstein condensates (BEC) in atomic gases an experimental challenge has been the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, atoms in a BEC have been coupled to electronic ground-state molecules through photoassociation as well as through a magnetic-field Feshbach resonance. The availability of atomic Fermi gases provides the exciting prospect of coupling fermionic atoms to bosonic molecules, and thus altering the quantum statistics of the system. This Fermi-Bose coupling is closely related to the pairing mechanism for a novel fermionic superfluid proposed to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of exotic, ultracold 40^{40}K2_2 molecules. Starting with a quantum degenerate Fermi gas of atoms at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create over a quarter million trapped molecules, which we can convert back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning from the Feshbach resonance and can be varied over a wide range. We directly detect these weakly bound molecules through rf photodissociation spectra that probe the molecular wavefunction and yield binding energies that are consistent with theory

    Magnetic properties of the frustrated AFM spinel ZnCr_2O_4 and the spin-glass Zn_{1-x}Cd_xCr_2O_4 (x=0.05,0.10)

    Full text link
    The TT-dependence (2- 400 K) of the electron paramagnetic resonance (EPR), magnetic susceptibility, χ(T)\chi (T), and specific heat, Cv(T)C_{v}(T), of the normalnormal antiferromagnetic (AFM) spinel ZnCr2_{2}O4_{4} and the spin-glass (SG) Zn1−x_{1-x}Cdx_{x}Cr2_{2}O4_{4} (x=0.05,0.10x=0.05,0.10) is reported. These systems behave as a strongly frustrated AFM and SG with % T_{N} ≈TG≈12 \approx T_{G}\approx 12 K and -400 K ≳ΘCW≳−500\gtrsim \Theta_{CW}\gtrsim -500 K. At high-TT the EPR intensity follows the χ(T)\chi (T) and the gg-value is TT-independent. The linewidth broadens as the temperature is lowered, suggesting the existence of short range AFM correlations in the paramagnetic phase. For ZnCr2_{2}O4_{4} the EPR intensity and χ(T)\chi (T) decreases below 90 K and 50 K, respectively. These results are discussed in terms of nearest-neighbor Cr3+^{3+} (S =3/2=3/2%) spin-coupled pairs with an exchange coupling of ∣J/k∣≈| J/k| \approx 50 K. The appearance of small resonance modes for Tâ‰Č17T\lesssim 17 K, the observation of a sharp drop in χ(T)\chi (T) and a strong peak in Cv(T)C_{v}(T) at TN=12T_{N}=12 K confirms, as previously reported, the existence of long range AFM correlations in the low-TT phase. A comparison with recent neutron diffraction experiments that found a near dispersionless excitation at 4.5 meV for Tâ‰ČTNT\lesssim T_{N} and a continuous gapless spectrum for T≳TNT\gtrsim T_{N}, is also given.Comment: 17 pages, 8 figures, 1 Table. Submitted to Physical Review

    Searching for serial refreshing in working memory:Using response times to track the content of the focus of attention over time

    Get PDF
    One popular idea is that, to support maintenance of a set of elements over brief periods of time, the focus of attention rotates among the different elements thereby serially refreshing the content of Working Memory (WM). In the research reported here, probe letters were presented between to-be-remembered letters. Response times to these probes were used to infer the status of the different items in WM. If the focus of attention cycles from one item to the next, its content should be different at different points in time and this should be reflected in a change in the response time patterns over time. Across a set of four experiments, we demonstrate a striking pattern of invariance in the response time patterns over time, suggesting that either the content of the focus of attention did not change over time or that response times cannot be used to infer the content of the focus of attention. We discuss how this pattern constrains models of WM, attention, and human information processing
    • 

    corecore